

Journal ofOrgano metallic Chemistry

Journal of Organometallic Chemistry 691 (2006) 2757-2766

www.elsevier.com/locate/jorganchem

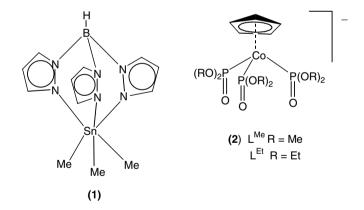
Six-coordinate organotin(IV) complexes formed using the Kläui ligands; $[CpCo\{P(OR')_2O\}_3]SnR_{3-n}Cl_n$

Nicholas C. Lloyd, Brian K. Nicholson *, Alistair L. Wilkins

Department of Chemistry, University of Waikato, Private Bag 3105, Hamilton, New Zealand

Received 14 December 2005; received in revised form 7 February 2006; accepted 9 February 2006

Available online 14 February 2006


Abstract

The complexes $[CpCo\{P(OR')_2O\}_3]SnR_{3-n}Cl_n [R' = Me, Et; R = Ph, Me]$ are readily prepared from the corresponding organotin chloride and the sodium salt of the Kläui ligands. The X-ray crystal structures of the full series are reported for R = Ph, n = 0-3, and these show that they are all six-coordinate, including the Ph₃Sn derivative which is the first example of a SnC_3O_3 coordination sphere. 1H , ^{13}C , ^{31}P and ^{119}Sn NMR spectra are reported, and interpreted in terms of significant second-order effects and fluxional processes. © 2006 Elsevier B.V. All rights reserved.

Keywords: Tin; Kläui ligands; NMR spectra; X-ray structure; Six coordination

1. Introduction

The coordination chemistry of organo-tin(IV) is well developed [1]. As is entirely predictable, for $R_n Sn X_{4-n}$ (R = alkyl, aryl; X = Cl, Br, etc.), the tendency towards increased coordination number decreases as the number of R groups increases. Hence, while RSnX₃ readily forms six-coordinate complexes with a wide range of Lewis bases, corresponding R₃SnX rarely forms analogous hexacoordinate species [2]. There appear to be only five structurally-characterised six-coordinate tin complexes which incorporate a R₃Sn⁺ group, all involving strongly chelating or pincer-type ligands [3]. The first of these to be reported was the reasonably-stable Me₃Sn[pz₃BH] (1) [4], and several subsequent studies described related pyrazolyl-borate complexes [5]. These included Ph₃Sn[pz₃BH] which was however found to be too unstable for structural characterisation [6,7]. The higher coordination numbers found for these compounds are a consequence of the strong tendency for the tripodal Trofimenko-type pyrazolyl-borate ligands to be tridentate [8].

An analogous type of mono-negative tridentate ligand which encourages strong coordination are the Kläui ligands 2 [9]. These have been found to give many novel complexes of the d- and f-block elements. In contrast, there have been few studies in which 2 has been used to form derivatives of the p-block elements. For Group 14 these have been restricted to L_2^RM (M = Si, Sn, Pb) [10] and to recently described inorganic four-coordinate Ge(II) and six-coordinate Ge(IV) derivatives of the type L^{Et} GeCl and L^{Et} Ge(N_3)₃, respectively [11]. The only organometallic p-block example of which we are aware is M_2 ClSn L^{Me} [12].

^{*} Corresponding author. Fax: +64 7 838 4219.

E-mail address: b.nicholson@waikato.ac.nz (B.K. Nicholson).

We now report the preparation of the series $Me_nCl_{3-n}SnL^R$ (R=Me) and $Ph_nCl_{3-n}SnL^R$ (R=Me, Et) together with selected structures and spectroscopic properties. This includes the structure of Ph_3SnL^{Me} , which is the first example for a Sn(IV) compound with a SnC_3O_3 coordination sphere. Some aspects of this work have been briefly communicated elsewhere [13].

2. Experimental

2.1. General methods

The new compounds were generally stable in air, but reactions involving organotin chlorides were carried out under dry nitrogen conditions, using purified solvents. ${}^{1}H$, ${}^{13}C\{{}^{1}H\}$, ${}^{31}P\{{}^{1}H\}$ and ${}^{119}Sn\{{}^{1}H\}$ NMR spectroscopy was performed on a Bruker Avance series DRX 300 or 400 MHz machine at 303 K in CDCl₃ unless otherwise noted. ³¹P spectra were referenced to orthophosphoric acid and ¹¹⁹Sn spectra were referenced to SnMe₄. For variable temperature 119Sn NMR corrections were applied for shifts in the signal, arising from variations in temperature. Resolution of spectra was, on average, ¹H, 0.09 Hz, ¹³C, 0.55 Hz, ³¹P, 1.2 Hz, ¹¹⁹Sn, 1.2 Hz. Data processing and collection used the xwin NMR V3.1 software suite. Where necessary, resolution enhancement was used, to allow confused and overlapping patterns to be seen. This was done by either altering the line-broadening factor (LB) or by setting a negative LB value (dependent on the nucleus in question: -1 Hz for 1 H and 13 C, ranging to -20 Hz for 13 P and 119 Sn due to the natural line width) and a GB value of 0.3 Hz. Scalar coupling constants were measured directly by observation from the spectra without simulation of second-order effects.

The organo–tin compounds were purchased from Aldrich, while the Kläui ligands NaL^{Me} and NaL^{Et} were from Strem.

2.2. Preparation of PhMeSnCl₂ (cf. Ref. [14])

PhSnCl₃ (3.02 g, 10 mmol) in a Schlenk flask under nitrogen was cooled to 0 °C in an ice bath. SnMe₄ (1.79 g, 10 mmol) was added dropwise, with stirring. After addition was complete, stirring was continued for half an hour. The mixture was pumped under vacuum at room temperature for several hours to remove the Me₃SnCl byproduct. The residue (2.74 g, 97%) was checked by GC–MS to establish purity, giving >95% MePhSnCl₂. 1 H NMR: δ 1.35 (CH₃, s), 7.68–7.52 (C₆H₅, m); 13 C NMR: δ 4.80 (CH₃, s), 129.6 (*m*-Ph, s), 131.7 (*p*-Ph, s), 134.6 (*o*-Ph, s), 138.8 (*i*-Ph, s); 119 Sn: δ 55.1.

2.3. Preparation of Ph_3SnL^{Me} (3)

A solution of NaL^{Me} (0.500 g, 1.05 mmol) was dissolved in the minimum amount of CH₂Cl₂ (ca. 5 mL) in

a round-bottomed flask. A solution of Ph₃SnCl (0.405 g, 1.05 mmol) in CH₂Cl₂ (ca. 5 mL) was added in one portion with stirring, and the mixture was stirred for 30 min. The cloudy mixture was filtered through a small column of Florisil and the solvent removed from the yellow solution by rotary evaporation. The residue was recrystallised from CH₂Cl₂/petroleum spirits at -20 °C giving yellow crystals of Ph₃SnL^{Me} (0.64 g, 76%). Anal. Calc. for C₂₉H₃₈CoO₉P₃Sn: C, 43.48; H, 4.78. Found: C, 43.54; H, 4.53%. ¹H NMR: δ 3.51 (CH₃, vq), 5.10 (Cp, s), 7.24 (m, p-Ph, m), 7.83 (o-Ph, d, J = 7.4 Hz, tin satellites ${}^{3}J_{119}_{Sn-1H} = 69 \text{ Hz}$, ${}^{3}J_{117}_{Sn-1H} =$ 57 Hz); ¹³C NMR: δ 52.4 (CH₃, vq, ${}^2J_{^{31}P^{-13}C} = 3$ Hz), 89.1 (Cp, s), 126.5 (p-Ph, s, tin satellites ${}^{4}J_{^{119}\text{Sn}-^{13}\text{C}; \ ^{117}\text{Sn}-^{13}\text{C}^{(av)}} = 15.6 \text{ Hz}$), 126.8 (m-Ph, s, tin satellite ${}^3J_{^{119}\mathrm{Sn}^{-13}\mathrm{C};\ ^{117}\mathrm{Sn}^{-13}\mathrm{C}^{(av)}}=64.8\ \mathrm{Hz}),\ 136.9\ (o\text{-Ph},\ \mathrm{s},\ \mathrm{tin}$ satellite ${}^{2}J_{^{119}\text{Sn}^{-13}\text{C}: ^{117}\text{Sn}^{-13}\text{C}^{(av)}} = 49.5 \text{ Hz}), 154.9 \ (i-Ph, q,$ $^{3}J_{^{31}P-^{13}C} = 3.5 \text{ Hz}, \text{ tin satellites } ^{1}J_{^{119}Sn-^{13}C} = 746 \text{ Hz},$ $^{1}J_{^{117}\text{Sn-}^{13}\text{C}} = 720 \text{ Hz}); \ ^{31}\text{P NMR: } \delta \ 117 \text{ (s)}; \ ^{119}\text{Sn NMR:}$ δ -408 (q, ${}^2J_{^{31}P_{-}^{-119}S_{n}} = 82$ Hz).

2.4. Preparation of Ph_2ClSnL^{Me} (4)

Using the same method, Ph₂SnCl₂ (0.361 g, 1.05 mmol) was reacted with NaL^{Me} (0.500 g, 1.05 mmol) in CH₂Cl₂ (5 mL) to give yellow crystals of Ph₂ClSnL^{Me} after purification and recrystallisation from CH₂Cl₂ and petroleum spirits (0.49 g, 62%). Anal. Calc. for C₂₃H₃₃-ClCoO₉P₃Sn: C, 36.37; H 4.38. Found: C, 36.92, H, 4.46%. ¹H NMR: δ 3.44 (CH₃, t, ${}^{3}J_{{}^{31}P^{-1}H} = 5.3$ Hz), 3.52 (CH₃, d, ${}^{3}J_{^{31}P^{-1}H} = 10.6 \text{ Hz}$), 3.85 (CH₃, t, ${}^{3}J_{^{31}P^{-1}H} = 5.4 \text{ Hz}$), 5.12 (Cp, s), 7.21 (*m*, *p*-Ph, m), 7.82 (o-Ph, d, J = 6.6 Hz, tin satellites ${}^{2}J_{119}_{Sn-1} = 94.2$ Hz, $^{2}J_{^{117}\text{Sn}^{-1}\text{H}} = 79.4 \text{ Hz}$; ^{13}C NMR: δ 52.6 (CH₃, br m), 53.7 (CH₃, br t, J = 4.3 Hz), 89.4 (Cp, s), 127.2 (m-Ph, s, tin satellite ${}^{3}J_{119}_{Sn-{}^{13}C: 117}_{Sn-{}^{13}C^{(av)}} = 90 \text{ Hz}$), 127.2 (p-Ph, s, tin satellite ${}^{4}J_{119}_{Sn-{}^{13}C: 117}_{Sn-{}^{13}C^{(av)}} = 18 \text{ Hz}$), 135.3 (o-Ph, s, tin satellite ${}^{2}J_{119}_{Sn-^{13}C; \ ^{117}Sn-^{13}C^{(av)}} = 62 \text{ Hz}$), 154.3 (*i*-Ph, q, $^{3}J_{^{31}P^{-13}C} = 3.5 \text{ Hz}, \text{ tin satellites} \ ^{1}J_{^{119}Sn^{-13}C} = 1047 \text{ Hz},$ $^{1}J_{^{117}Sn^{-13}C} = 997 \text{ Hz}); \ ^{31}P \text{ NMR } \delta \text{ 119 (m)}. \ ^{119}Sn \text{ NMR: } \delta$ -491 (d of t, ${}^{2}J_{^{31}P-^{119}Sn} = 94$, 62 Hz).

2.5. Preparation of $PhCl_2SnL^{Me}$ (5)

Using the same method, PhSnCl₃ (0.307 g, 1.05 mmol) was reacted with NaL^{Me} (0.500 g, 1.05 mmol) in CH₂Cl₂ (5 ml) to give yellow crystals of PhCl₂SnL^{Me} (0.44 g, 58%). Anal. Calc. for C₁₇H₂₈Cl₂CoO₉P₃Sn: C, 28.44, H, 3.93. Found: C, 28.16; H, 3.97%. ¹H NMR: δ 3.47 (CH₃, m), 3.75 (CH₃, m), 3.82 (CH₃, m), 5.12 (Cp, s), 7.25 (*m*, *p*-Ph, m), 7.83 (*o*-Ph, d, J = 6.6 Hz, tin satellites ${}^3J_{119}$ Sn⁻¹H = 138.6 Hz, ${}^3J_{117}$ Sn⁻¹H = 130.4 Hz); 13 C NMR: δ 52.8 (CH₃, m), 53.7 (CH₃, m), 54.0 (CH₃, m), 89.7 (Cp, s,), 127.6 (*m*-Ph, s, ${}^3J_{119}$ Sn⁻¹³C; 117 Sn⁻¹³C(av) = 146 Hz), 128.2 (*p*-Ph, s, tin satellite ${}^4J_{119}$ Sn⁻¹³C; 117 Sn⁻¹³C(av) = 28 Hz), 133.8 (*o*-Ph, s, tin satellite ${}^2J_{119}$ Sn⁻¹³C: 117 Sn⁻¹³C(av) = 78 Hz), 153.5

(*i*-Ph, m, tin satellite ${}^{1}J_{119}{}_{Sn-13}{}_{C; 117}{}_{Sn-13}{}_{C^{(av)}} = 1720 \text{ Hz}$); ${}^{31}P$ NMR: δ 117 (br, s); ${}^{119}Sn$ NMR: δ -569 (m).

2.6. Preparation of Cl_3SnL^{Me} (6)

Similarly, SnCl₄ (0.1642 g, 0.63 mmol) was reacted with NaL^{Me} (0.300 g, 0.63 mmol) in CH₂Cl₂ (5 ml) to give yellow crystals of Cl₃SnL^{Me} (0.16 g, 38%). Anal. Calc. for C₁₁H₂₃Cl₃CoO₉P₃Sn: C, 19.54, H, 3.43. Found: C, 19.68, H, 3.34%. ¹H NMR: δ 3.80 (CH₃, vq, ${}^3J_{{}^{31}P_{-}^{-1}H}$ = 3.8 Hz), 5.22 (Cp, s). ¹³C NMR: δ 54.0 (CH₃, vq, ${}^2J_{{}^{31}P_{-}^{-13}C}$ = 3.3 Hz), 89.9 (Cp, s). ³¹P NMR: δ 121 (s). ¹¹⁹Sn NMR: δ –661 (br, s).

2.7. Attempted preparation of Me_3SnL^{Me} (7)

Using the same method, $Me_3SnCl~(0.209~g,~1.05~mmol)$ with $NaL^{Me}~(0.500~g,~1.05~mmol)$ in $CH_2Cl_2~(5~ml)$ gave yellow crystals of a complex mixture of products, apparently Me_2ClSnL^{Me} , $MeCl_2SnL^{Me}$ and NaL^{Me} (see Section 3).

2.8. Preparation of Me₂ClSnL^{Me} (8)

Similarly, Me₂SnCl₂ (0.2307 g, 1.05 mmol) was reacted with NaL^{Me} (0.500 g, 1.05 mmol) in CH₂Cl₂ (5 ml) to give yellow crystals of Me₂ClSnL^{Me} (0.40 g, 60%). Anal. Calc. for C₁₃H₂₉ClCoO₉P₃Sn: C, 24.59, H, 3.66. Found: C, 24.95; H, 4.50%. ¹H NMR: δ 0.43 (CH₃–Sn), s, $^2J_{^{119}\text{Sn}^{-1}\text{H}} = 76$ Hz, 3.62 (CH₃–O, pseudo q, $^3J_{^{31}\text{P}^{-1}\text{H}} = 3.4$ Hz), 5.03 (Cp, s). ¹³C NMR: δ 14.0 (CH₃–Sn, q, $^3J_{^{31}\text{P}^{-13}\text{C}} = 3.3$ Hz, tin satellites $^1J_{^{119}\text{Sn}^{-13}\text{C}} = 713$ Hz, $^1J_{^{117}\text{Sn}^{-13}\text{C}} = 682$ Hz), 52.5 (CH₃–O, br, s), 89.3 (Cp, s); ^{31}P NMR: δ 117 (br, s). ¹¹⁹Sn NMR: δ –340 (q, $^2J_{^{31}\text{P}^{-119}\text{Sn}} = 88$ Hz).

2.9. Preparation of MeCl₂SnL^{Me} (9)

Similarly, MeSnCl₃ (0.252 g, 1.05 mmol) and NaL^{Me} (0.500 g, 1.05 mmol) in CH₂Cl₂ (5 ml) gave yellow crystals of MeCl₂SnL^{Me} (0.55 g, 80%). Anal. Calc. for C₁₂H₂₆Cl₂CoO₉P₃Sn: C, 21.98, H, 3.97. Found: C, 22.04, H, 3.97%. ¹H NMR: δ 0.98 (Me–Sn, s, tin satellites $^2J_{^{119}\text{Sn}-^{13}\text{C}} = 135 \text{ Hz}, ^2J_{^{117}\text{Sn}-^{13}\text{C}} = 131 \text{ Hz}), 3.63 \text{ (CH}_3-\text{O}, m), 3.75 \text{ (CH}_3-\text{O}, m), 5.13 \text{ (Cp, s).} ^{13}\text{C NMR: δ 19.2 (CH}_3-\text{Sn}, pseudo q, <math>^3J_{^{31}\text{P}-^{13}\text{C}} = 3.5 \text{ Hz}, \text{ tin satellites} ^1J_{^{119}\text{Sn}-^{13}\text{C}} = 1274 \text{ Hz}, ^1J_{^{117}\text{Sn}-^{13}\text{C}} = 1218 \text{ Hz}), 52.6 \text{ (CH}_3-\text{O}, m), 53.5 \text{ (CH}_3-\text{O}, m), 54.0 \text{ (CH}_3-\text{O}, m), 89.7 \text{ (Cp, s);} ^{31}\text{P} \text{ NMR: δ 119 (br, s);} ^{119}\text{Sn NMR: δ} -509 \text{ (m)}.$

2.10. Preparation of PhMeClSnL^{Me} (10)

As above, PhMeSnCl₂ (0.237 g, 0.84 mmol) with NaL^{Me} (0.400 g, 0.84 mmol) in CH₂Cl₂ (5 ml) gave a yellow solid. Several recrystallizations were attempted, but were not successful because of rearrangement reactions. This compound was only characterised by its ¹¹⁹Sn NMR shift (see discussion).

2.11. Preparation of Ph_3SnL^{Et} (11)

Using the same method, Ph₃SnCl (0.345 g, 0.896 mmol) was reacted with NaL^{Et} (0.500 g, 0.896 mmol) in CH₂Cl₂ (5 mL) to give yellow crystals of Ph₃SnL^{Et} (0.53 g, 67%). Calcd for C₃₅H₅₀CoO₉P₃Sn: C, 47.48; H, 5.69. Found: C, 47.48, H, 5.59%. ¹H NMR: δ 1.17 (CH₃, t, J = 7.1 Hz), 3.92 (CH₂, m), 5.07 (Cp, s), 7.25 (m, p-Ph, m), 7.80 (o-Ph, d, J = 6.6 Hz, tin satellites $^3J_{117}_{Sn-1}$ H = 68 Hz, $^3J_{117}_{Sn-1}$ H = 54 Hz); 13 C NMR: δ 16.5 (CH₃, vq, $^3J_{31}_{P-1}$ 3°C = 1.9 Hz), 60.9 (CH₂, vq, $^2J_{31}_{P-1}$ 3°C = 3.1 Hz), 89.5 (Cp, s), 126.3 (p-Ph, s, tin satellite $^4J_{119}_{Sn-1}$ 3°C = 66 Hz, $^3J_{117}_{Sn-1}$ 3°C = 64 Hz), 136.9 (o-Ph, s, tin satellite $^2J_{119}_{Sn-1}$ 3°C = 66 Hz, in satellite $^2J_{119}_{Sn-1}$ 3°C = 3.6 Hz, tin satellite $^1J_{119}_{Sn-1}$ 3°C = 750 Hz, J_{117}_{Sn-1} 3°C = 717 Hz); 31 P NMR: δ 114 (s); 119 Sn NMR: δ -413 (q, $^2J_{119}_{Sn-3}$ 1 = 82 Hz).

2.12. Preparation of Ph_2ClSnL^{Et} (12)

Similarly, Ph₂SnCl₂ (0.308 g, 0.896 mmol) was reacted with NaL^{Et} (0.500 g, 0.896 mmol) in CH₂Cl₂ (5 mL) to give yellow crystals (from CDCl₃) of Ph₂ClSnL^{Et} (0.18 g, 24%). Anal. Calc. for C₂₉H₄₅ClCoO₉P₃Sn · 2CHCl₃: C, 34.33; H, 4.55. Found: C, 34.92; 5.03%. ¹H NMR: δ 1.08 (CH₃, t, J = 7.1 Hz), 1.14 (CH₃, t, J = 7.1 Hz), 1.31 (CH₃, t, J = 7.1 Hz), 3.85 (CH₂, m), 4.27 (CH₂, m), 5.07 (Cp, s), 7.20 (m, p-Ph, m), 7.81 (o-Ph, d, J=7.0 Hz) $^{3}J_{^{119}\text{Sn}^{-1}\text{H}} = 92 \text{ Hz}, \ ^{3}J_{^{117}\text{Sn}^{-1}\text{H}} = 80 \text{ Hz}). \ ^{13}\text{C NMR}: \ \delta \ 16.3$ (CH_3, m) , 16.6 $(CH_3, t, J = 2.9 Hz)$, 61.3 (CH_2, m) , 62.2 $(CH_2, t, J = 4.5 Hz)$, 89.6 (Cp, s), 127.0 (p-Ph, s, tin satellite ${}^4J_{119}_{Sn-^{13}C; 117}_{Sn-^{13}C^{(av)}} = 18$ Hz), 126.9 (*m*-Ph, s, tin satellite ${}^{3}J_{119}_{\text{Sn-}^{13}\text{C}} = 91 \text{ Hz}, {}^{3}J_{117}_{\text{Sn-}^{13}\text{C}}(av)} = 88 \text{ Hz}), 135.3 (o-Ph,$ s, tin satellite ${}^{2}J_{119}_{Sn-{}^{13}C; 117}_{Sn-{}^{13}C^{(av)}} = 61 \text{ Hz}$), 154.8 (*i*-Ph, q, ${}^{3}J_{{}^{31}P^{-13}C} = 3.5$ Hz, tin satellites ${}^{1}J_{{}^{119}Sn^{-13}C} = 1044$ Hz, ${}^{1}J_{{}^{117}Sn^{-13}C} = 1004$ Hz). ${}^{31}P$ NMR: δ 116 (m). ${}^{119}Sn$ NMR: δ -495 (d of t, ${}^{2}J_{119}_{Sn-{}^{31}P} = 92$, 62 Hz).

2.13. Preparation of $PhCl_2SnL^{Et}$ (13)

Similarly, PhSnCl₃ (0.345 g, 0.896 mmol) was reacted with NaL^{Et} (0.500 g, 0.896 mmol) in CH₂Cl₂ (5 mL) to give yellow crystals of PhCl₂SnL^{Et} (0.57 g, 79%). Anal. Calc. for C₂₄H₄₀Cl₂CoO₉P₃Sn.CHCl₃: C, 32.13, H, 4.53. Found C, 32.71, H, 4.80. ¹H NMR: δ 1.08 (CH₃, t, J = 7.1 Hz), 1.27 (CH₃, t, J = 7.0 Hz), 1.29 (CH₃, t, J = 7.0 Hz), 3.85 (CH₂, m), 4.25 (CH₂, m), 5.09 (Cp, s), 7.24 (*m*, *p*-Ph, m), 7.81 (*o*-Ph, d, J = 7.1 Hz, tin satellites $^3J_{119}_{Sn-1}H = 142$ Hz, $^3J_{117}_{Sn-1}H = 133$ Hz); 13 C NMR: δ 16.3 (CH₃, m), 16.5 (CH₃, m), 61.8 (CH₂, m), 62.5 (CH₂, m), 62.9 (CH₂, m), 89.9 (Cp, s), 128.0 (*p*-Ph, s, tin satellite $^4J_{119}_{Sn-13}C_1^{(117}_{Sn-13}C_1^{(av)} = 28$ Hz), 127.3 (*m*-Ph, s, tin satellite $^4J_{119}_{Sn-13}C_1^{(117}_{Sn-13}C_1^{(av)} = 139$ Hz), 133.7 (*o*-Ph, s, tin satellites $^3J_{119}_{Sn-13}C_1^{(117}_{Sn-13}C_1^{(av)} = 77$ Hz), 153.8 (*i*-Ph, m, tin satellites $^1J_{119}_{Sn-13}C_1^{(117}_{Sn-13}C_1^{(av)} = 1729$ Hz); 31 P NMR: δ 116 (s); $^{119}_{Sn}$ NMR: δ –570 (m).

2.14. X-ray crystallography

Data were collected on a Bruker SMART CCD diffractometer using standard procedures. They were solved by direct methods and refined (on F_0^2) using the SHELX programs [15] running under WINGX [16]. Crystal data and refinement details are in Table 1. Special details for each: Ph₃SnL^{Me} (3) crystallized with two independent molecules in the asymmetric unit; Cl₂SnL^{Me} (6) was located on a mirror plane which led to disorder involving the Cp ring and the Me groups so hydrogen atoms were not included in the refinement and the precision of the determination was reduced; PhCl₂SnL^{Me} (5) crystallized with a molecule of CH₂Cl₂ in the lattice but was otherwise straightforward; Ph₂ClSnL^{Et} (12) also had disorder, involving the CH₂ portion of the the Et groups but this was readily modelled. The structures are illustrated in Figs. 1-4 with selected bond parameters included in the captions.

3. Results and discussion

3.1. Preparation of the complexes

Synthesis of the new complexes 3–13 was generally straightforward, by combining equal amounts of the appropriate organotin chloride with NaL^R in CH_2Cl_2 (Eq. (1)).

$$R_{3-n}SnCl_n + NaL^R \rightarrow R_{3-n}SnCl_{n-1}L^R + NaCl \tag{1} \label{eq:1}$$

5
$$R = Me R^1 = Ph R^2 = R^3 = CI$$

6
$$R = Me R^1 = R^2 = R^3 = CI$$

8
$$R = Me R^1 = R^2 = Me R^3 = CI$$

12 R = Et
$$R^1 = R^2 = Ph R^3 = CI$$

13
$$R = Et R^1 = Ph R^2 = R^3 = CI$$

Recrystallisation generally yielded pure, air-stable compounds in good yields and these were characterized by elemental analysis and NMR spectroscopy. The structures of **3**, **5**, **6** and **12** were also determined. No indication of ligand rearrangements equivalent to that observed for reactions of NaL^{Et} with ZrCl₄ was seen with the tin halides [17].

				Μ.
Crystal	data	and	refinement	details
Table I				

	$Cl_3SnL^{Me} \cdot CH_2Cl_2$ (6) $\cdot CH_2Cl_2$	$PhCl_{2}SnL^{Me}\cdot CH_{2}Cl_{2}\ (\textbf{5})\cdot CH_{2}Cl_{2}$	Ph_2ClSnL^{Et} (12)	Ph ₃ SnL ^{Me} (3)
Formula	$C_{12}H_{25}Cl_5CoO_9P_3Sn$	C ₁₈ H ₃₀ Cl ₄ CoO ₉ P ₃ Sn	C ₂₉ H ₄₅ ClCoO ₉ P ₃ Sn	C ₂₉ H ₃₈ CoO ₉ P ₃ Sn
$M_{ m r}$	761.10	802.75	843.63	801.12
$T(\mathbf{K})$	203	168	168	200
Crystal system	Orthorhombic	Triclinic	Triclinic	Monoclinic
Space group	Pnma	$P\bar{1}$	$P\bar{1}$	$P2_1/c$
a (Å)	17.6545(2)	8.677(4)	10.046(2)	19.301(1)
b (Å)	12.2563(2)	9.786(5)	11.615(3)	20.636(1)
c (Å)	12.1295(2)	18.524(9)	17.083(4)	18.565(1)
α (°)	90	75.037(6)	94.972(3)	90
β (°)	90	87.385(6)	90.299(3)	117.954(1)
γ (°)	90	67.783(6)	114.862(3)	90
$V(\mathring{\mathbf{A}}^3)$	2624.57(7)	1404.3(11)	1799.9(7)	6531.6(1)
Z	4	2	2	8
$\rho (g \text{ cm}^{-3})$	1.926	1.898	1.557	1.629
$\mu (\mathrm{mm}^{-1})$	2.31	2.08	1.41	1.47
Size (mm ³)	$0.55 \times 0.50 \times 0.38$	$0.65 \times 0.50 \times 0.22$	$0.42 \times 0.25 \times 0.15$	$0.40 \times 0.17 \times 0.10$
F(000)	1504	800	860	3248
$\theta_{\rm max}$ (°)	27.6	26.5	26.5	27.5
Reflns collected	26033	17794	23 586	39 294
Unique refins	3131	5502	7302	14254
Parameters	178	331	403	803
$R_1[I \geq 2\sigma(I)]$	0.0952	0.0484	0.0216	0.0322
wR_2 (all data)	0.2388	0.1073	0.0556	0.0773
GOF on F ²	1.309	1.171	1.033	1.071

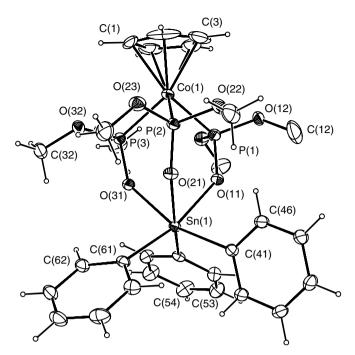


Fig. 1. The structure of Ph_3SnL^{Me} (3). Bond parameters include: Sn(1)–O(11) 2.213(2), Sn(1)–O(21) 2.248(2), Sn(1)–O(31) 2.229(2), Sn(1)–C(41) 2.172(3), Sn(1)–C(51) 2.177(3), Sn(1)–C(61), 2.174(3) Å, O–Sn–O (av.) 79.4(1)°, C–Sn–C (av.) 103.3(1)°.

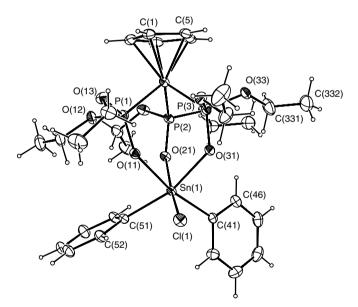


Fig. 2. The structure of Ph_2CISnL^{Et} (12). Bond parameters include: Sn(1)–O(11) 2.156(1), Sn(1)–O(21) 2.182(2), Sn(1)–O(31) 2.159(1), Sn(1)–C(41) 2.170(2), Sn(1)–C(51) 2.170(2), Sn(1)–Cl(1) 2.4523(7) Å, O–Sn–O (av.) 82.3(1)°, C(41)–Sn–C(51) 104.3(1)°, C(41)–Sn–Cl(1) 98.14(5)°, C(51)–Sn–Cl(1) 98.01(5)°.

Attempts to form Me_3SnL^{Me} by reaction of Me_3SnCl with NaL^{Me} unexpectedly gave only Me_2ClSnL^{Me} . This has clearly arisen via a redistribution reaction:

$$2Me_3SnCl \leftrightarrow Me_4Sn + Me_2SnCl_2 \tag{2}$$

followed by reaction of the Me_2SnCl_2 with the Kläui ligand. Although redistribution reactions like that of Eq.

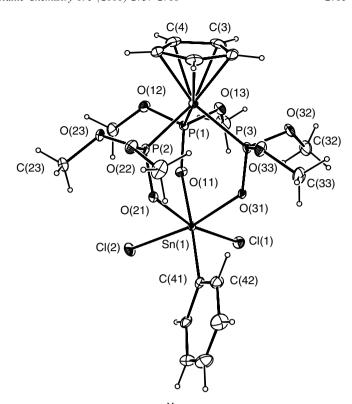


Fig. 3. The structure of PhCl₂SnL^{Me} (5). Bond parameters include: Sn(1)—O(11) 2.044(4), Sn(1)—O(21) 2.111(3), Sn(1)—O(31) 2.071(3), Sn(1)—C(41) 2.111(5), Sn(1)—Cl(1) 2.385(20), Sn(1)—Cl(2) 2.385(2) Å, O—Sn—O (av.) 84.9(1)°, Cl(1)—Sn—C(41) 99.3(1)°, Cl(2)—Sn—C(41) 95.5(1)°, Cl(1)—Sn—Cl(2) 97.40(5)°.

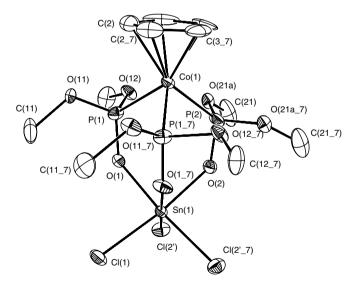


Fig. 4. The structure of $\text{Cl}_3\text{SnL}^{\text{Me}}$ (6). Bond parameters include: Sn(1)–O(1) 2.084(9), Sn(1)–O(2) 2.064(12), Sn(1)–Cl(1) 2.367(5), Sn(1)–Cl(2) 2.369(4) Å, O–Sn–O (av.) 86.6(2)°, Cl–Sn–Cl (av.) 95.0(2)°.

(2) are well known, they are not usually significant under such mild conditions (25 °C, CH₂Cl₂) so in this case must be promoted by [L^R]⁻. Because of the higher Lewis acidity of Me₂SnCl₂, preferential reaction to give Me₂ClSnL^{Me} would shift the equilibrium of Eq. (2) to the right. There was ¹¹⁹Sn NMR evidence of corresponding redistribution

processes in the other syntheses, especially for Ph₃SnL^R, but these were slower and did not affect the yields.

Similarly, a pure sample of MePhClSnL^{Me} could not be isolated because scrambling led to other combinations. However the ¹¹⁹Sn NMR (see below) could be deduced from the mixture since the impurity peaks were well-separated from the main component.

3.2. X-ray crystal structures

The structures of a full series of compounds, $Ph_{3-n}Cl_nSnL^R$ were determined, to confirm the six-coordination in each case and to monitor the changes in bond parameters across the series.

The crystal structure of Ph₃SnL^{Me} (3) revealed two structurally-equivalent independent molecules in the asymmetric unit. The geometry of one is illustrated in Fig. 1 and averaged bond parameters are given in the caption. The tin atom is clearly six-coordinate, a very rare example for a triorganotin centre and the first with a SnC₃O₃ coordination sphere. The geometry about the tin atom is distorted octahedral, with average O-Sn-O angles of 79.4° and C-Sn-C of 103.3°. This will be a consequence of the small bite of the L^{Me} ligand and the steric interactions between the three fac Ph groups. The Sn–C bonds are 2.174(3) Å, compared with 2.122 Å in Ph₃SnCl [18], and the Sn-O bonds average 2.239(2) Å which indicates reasonably strong bonding – for comparison Sn-O distances around 2.40 and 2.30 Å are found respectively for five-coordinate R₃SnCl- $(O=PPh_3)$ and $R_2SnCl_2(O=PPh_3)$ complexes (R=Me,Ph) [19].

The structures of the remaining members of the series are illustrated in Figs. 2–4, and bond parameters are included in the captions. Table 2 compares selected parameters amongst the different compounds. These show the following trends from the Ph_3SnL^{Me} example 3 to the Cl_3SnL^{Me} complex 6:

(i) Both the Sn–C and Sn–Cl bond lengths decrease as the Ph groups are replaced by Cl, with the Sn–Cl bond length in Cl₃SnL^{Me} at 2.368 Å being slightly

- shorter than the corresponding distance in a number of Cl₃Sn[(pz)₃BH] examples (typically 2.37–2.38 Å) [5–7], suggesting similar bonding.
- (ii) The Sn–O bonds also decrease across the series, with those *trans* to C being consistently shorter than those *trans* to Cl in the two examples where both are present, which is the opposite of what would be expected given the relative *trans* influences of C and Cl.
- (iii) The P=O bonds also decrease slightly as the L^R ligand becomes more tightly bonded to Sn.
- (iv) The complexes tend more towards octahedral across the series, from C–Sn–C and O–Sn–O angles of 103.3° and 79.4° , respectively, for Ph_3SnL^{Me} to Cl–Sn–Cl and O–Sn–O angles of 95.0° and 86.6° for Cl_3SnL^{Me} .

These trends can all be explained by the increasing Lewis acidity of the tin atom as less-bulky but moreelectronegative Cl atoms replace Ph groups.

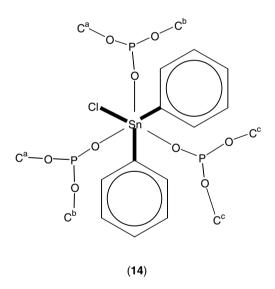
3.3. NMR spectra

The complexes prepared in this study are particularly interesting for NMR study. They have several active nuclei (¹H, ¹³C, ³¹P and ¹¹⁹Sn), have symmetry that leads to virtual coupling effects, and show temperature-affected fluxional behaviour. Full data for each compound are listed in Section 2.

3.3.1. ¹H and ¹³C spectra

For all of the compounds, the cyclopentadienyl rings give single ^{1}H and ^{13}C resonances at ca. δ 5.1 and 89 ppm, respectively, only marginally shifted from those of the free ligand with no discernible coupling to the other nuclei present.

For the OMe groups on the L^{Me} compounds (and the OEt groups on L^{Et}) the spectra gave 1 H and 13 C patterns complicated by virtual coupling effects, as has been analysed for other complexes with the Kläui ligands [20]. Ph₃SnL^{Me} (3) is an example with C_{3v} symmetry. In the 1 H spectrum the methyl protons gave a multiplet at


Table 2 Selected bond parameters for complexes

	Ph ₃ SnL ^{Me} (3)	Ph ₂ ClSnL ^{Et} (12)	PhCl ₂ SnL ^{Me} (5)	Cl ₃ SnL ^{Me} (6)
Bond lengths (Å)				
Sn-C	2.174(3)	2.170(2)	2.111(5)	
Sn-Cl		2.452(1)	2.385(1)	2.368(5)
Sn-O (trans to C)	2.239(2)	2.157(2)	2.044(4)	
Sn-O (trans to Cl)		2.181(1)	2.099(3)	2.074(12)
P=O	1.512(2)	1.517(1)	1.498(4)	1.490(13)
Bond angles (°)				
O-Sn-O	79.4(1)	82.30(5)	84.9(1)	86.6(1)
C-Sn-C	103.3(1)	104.3(1)		
C-Sn-Cl		98.07(5)	97.4(1)	
Cl-Sn-Cl			97.4(1)	95.0(2)

3.51 ppm, with virtual coupling to the phosphorus nuclei which can be analyzed as an $A_{18}X_3$ spin system. This "virtual quartet" is symmetrical, with ${}^3J_{\rm P-H}=3.6,\ 2.9,\$ and 3.6 Hz. The effect is more noticeable in the coordinated species than in the free ligand where the couplings are unsymmetrical ${}^3J_{\rm P-H}=3.5,\ 3.1$ and 3.6 Hz. Similarly in the ${}^{13}{\rm C}$ spectrum the methyl carbons gave a virtual quartet at 52.4 ppm, of four lines of equal intensity, ${}^2J_{\rm P-C}=3.1$ Hz. This was from the six equivalent carbons, coupling to the three equivalent phosphorus, in an A_6X_3 [CpCo{P(OCH₃)₂O}₃SnPh₃] spin system. As in the proton spectra, this is slightly shifted from 50.7 ppm in the free ligand, the coupling constant is also slightly increased from ${}^2J_{\rm P-C}=2.6$ Hz.

 Cl_3SnL^{Me} (6) also has C_{3v} symmetry, so the 1H and ^{13}C methyl signals appeared as the expected virtual quartet. Analysis was the same as for Ph_3SnL^{Me} and details are given in Section 2.

In Ph₂ClSnL^{Me} (4) the idealized symmetry is lowered from C_{3v} to C_s . The spectra are mainly first-order so analysis is reasonably straightforward. The ¹H NMR signals of the methyl groups now show three distinct peaks – a triplet at 3.44 pm with $^3J_{P-H} = 5.3$ Hz, a doublet at 3.52 ppm with $^3J_{P-H} = 10.6$ Hz, and a triplet at 3.85 ppm with $^3J_{P-H} = 5.4$ Hz. (Fig. 5).

The three methyl signals can be explained with the help of **14**. This shows a projection of the molecule, indicating the three distinct methyl groups, marked as C_a , C_b , and C_c . C_a and C_b , are on phosphorus *trans* to phenyl groups, and these show two similar triplets, with virtual coupling to two equivalent P nuclei in an $A_{12}X_2$ spin system. The remaining, C_c , only shows a doublet, coupling to one P nucleus, in an A_6X spin system.

Similarly the methyl signals in the ¹³C NMR spectrum of Ph₂ClSnL^{Me} (4) show two multiplets, the one at 52.6 ppm ($^2J_{P-C} = 4.6$ and 4.4 Hz), twice the intensity of the other at 53.7 ppm ($^2J_{P-C} = 4.5$ and 4.2 Hz). The coupling is caused by two equivalent and one unique phospho-

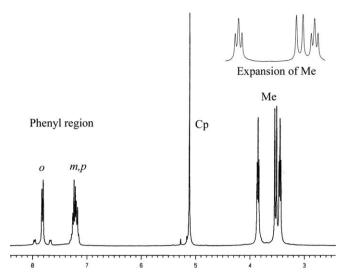


Fig. 5. ¹H NMR spectrum of Ph₂ClSnL^{Me}.

rus atoms, but the pattern has second-order characteristics as the intensities of the lines are not as predicted in simple terms.

The same pattern essentially repeats for the other Ph compound with C_s symmetry, $PhCl_2SnL^{Me}$ (5) where the 1H and ^{13}C spectra again gave three multiplets for the OMe groups, but with more pronounced second-order affects which led to distorted shapes.

The phenyl-tin analogues formed with the L^{Et} ligand showed essentially the same type of behaviour for the OR groups on the ligand, other than the obvious extra complexity arising from the Et versus the Me group.

For the methyl–tin compounds the ligand signals are moderated by more rapid fluxionality. Thus for Me₂ClSnL^{Me} (8) the OCH₃ signals appear as a quartet from three pseudo-equivalent phosphorus atoms, while the ¹³C shows a broad unresolved single peak for the OCH₃ groups. The methyl groups on the tin atom show a resolved quartet in the ¹³C but no phosphorus coupling could be resolved for the ¹H signal at 0.43 ppm, which is shifted considerably upfield from that in Me₂SnCl₂ at 1.21 ppm.

For MeCl₂SnL^{Me} (9) the lower symmetry is more apparent, with two distorted multiplets (2:1 intensity ratio) for the ¹H and three separate complex multiplets for the ¹³C for the ligand OCH₃ groups, as seen for the Ph₂ClSnL^{Me} compound. The ¹³C of the tin–methyl is still a second-order quartet.

For the ¹H and ¹³C spectra of all of the compounds, varying the temperature between 300 and 220 K had little affect on the patterns observed, despite the evidence from the ¹¹⁹Sn spectra (discussed below) that the molecules are fluxional at ambient temperature.

3.3.2. ³¹P NMR spectra

The ³¹P NMR signal for Ph₃SnL^{Me} was a single broad peak at 117 ppm.

This is only slightly shifted from the free ligand at 112 ppm. On cooling to 220 K, coupling could be resolved from tin satellites, ${}^2J_{\text{Sn-P}} = 77 \text{ Hz}$. Similarly for Cl₃SnL^{Me} there was a single broad peak at room temperature, but cooling to resolve any coupling was precluded by poor solubility.

For Ph_2CISnL^{Me} (4) at 300 K the ³¹P NMR spectrum is difficult to interpret, because of the broad line-width of the pattern. At 220 K, the line-width is reduced, allowing the signal to be resolved (Fig. 6). Processing with resolution enhancement (LB = -5 Hz, and GB = 0.3 Hz) facilitated the interpretation of the observed multiplicity. It was assessed as a heavily distorted second-order system, which can be described as an ABC pattern, where B and C are only slightly different in chemical environment.

The A part of the signal at 122 ppm shows coupling with B, $J_{\rm AB}=172$ Hz, which then shows coupling to C, $J_{\rm AC}=113$ Hz to give a heavily distorted doublet of doublets.

The part of the signal which is closer to the B and C parts of the signal was increased in intensity as would be expected in a second-order system. This hinders immediate recognition of the multiplicity. The B part of the signal, at

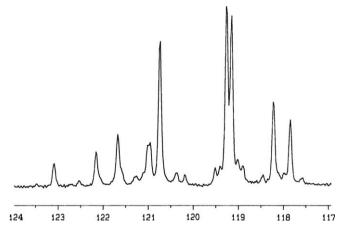


Fig. 6. ³¹P spectrum of Ph₂ClSnL^{Me} at 220 K.

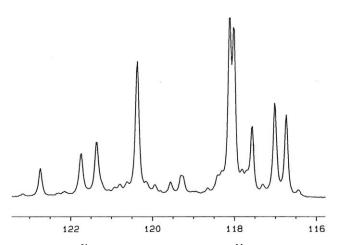


Fig. 7. ^{31}P NMR spectrum of Me_2ClSnL^{Me} at 220 K.

119 ppm, shows coupling to A as a doublet $J_{\rm AB}=172$ Hz, and the C part of the signal, also at 119 ppm, also shows coupling to A as a doublet $J_{\rm AC}=113$ Hz, both of which are distorted and close to overlapping. $J_{\rm BC}$ coupling is too small to show any resolvable features.

The ³¹P NMR spectrum for Me₂ClSnL^{Me} was a broad multiplet at 300 K, but on cooling to 220 K a similar complex pattern as was seen for Ph₂ClSnL^{Me} could be distinguished and interpreted the same way. The spectrum recorded here (Fig. 7) is more complex than that reported previously for the same compound, where it was recorded in CD₂Cl₂ at 202 K and was analysed as an AB₂ spin system with $\delta_A = 119$, $\delta_B = 117$, $J_{AB} = 146$ Hz [12]. The ³¹P spectrum for PhSnCl₂L^{Me} was a very broad sin-

The ³¹P spectrum for PhSnCl₂L^{Me} was a very broad single peak at 300 K. On cooling to 220 K, the signal resolved into a complicated multiplet (Fig. 8) which could not be fully analysed.

Similarly for MeCl₂SnL^{Me} the ³¹P spectrum at 300 K was a single broad peak, which at 220 K gave a similar pattern to that of the PhCl₂SnL^{Me} analogue.

3.3.3. ¹¹⁹Sn NMR spectra

The ¹¹⁹Sn NMR shifts gave a perfectly linear relationship to the number of Ph groups for both of the $Ph_{3-n}Cl_nSnL^R$ series (R = Me, Et). This linear relationship is unusual, as the four-coordinate $Ph_{4-n}SnCl_n$ series does not give a simple correlation [21]. However the six-coordinate tin pyrazolyl-borate series, $R_{3-n}Cl_nSn$ -[(pz)₃BH] also showed linear plots [7].

Although the chemical shifts were straightforward, the actual patterns were complex.

The 119 Sn spectrum for Ph₃SnL^{Me} at 300 K showed the expected quartet at -408 ppm, with AX₃ coupling to three equivalent phosphorus nuclei. The coupling observed was $^{2}J_{\text{Sn-P}} = 82$ Hz. At 220 K the quartet was more clearly

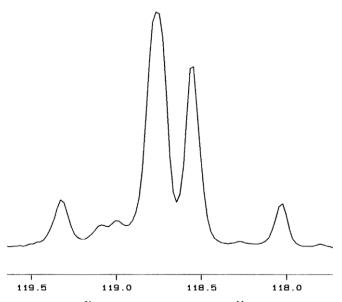


Fig. 8. ^{31}P NMR spectrum of PhCl $_2$ SnL Me at 220 K

resolved, and the coupling was $^2J_{\rm Sn-P}=79~\rm Hz$ which matches the coupling for the tin satellites in the $^{31}\rm P$ spectrum. $\rm Ph_3SnL^{Et}$ also gave the predicted quartet, at $-413~\rm ppm$, slightly shifted from that of $\rm Ph_3SnL^{Me}$ at $-408~\rm ppm$ but with the same coupling constant $^2J_{\rm Sn-P}=82~\rm Hz$.

For $\text{Cl}_3\text{SnL}^{\text{Me}}$ where the same pattern was expected there was only a single broad peak at 300 K. However at 220 K the signal appeared as a poorly resolved quartet, δ –661 ppm, ${}^2J_{\text{Sn-P}}=16$ Hz. Further analysis was hampered by low solubility.

For Ph_2ClSnL^{Me} the ¹¹⁹Sn NMR spectrum at 300 K is a first-order doublet ($J_{Sn-P}=94$ Hz) of triplets ($J_{Sn-P}=62$ Hz). This can be described as an AX_2Y system where A is tin and X and Y are phosphorus. There was little change between this and the spectrum run at 220 K.

For Me₂ClSnL^{Me} the ¹¹⁹Sn spectra at 300 K showed an apparent quartet which was resolved as the temperature was lowered into a doublet of triplets as seen for Ph₂ClSnL^{Me}. The temperature at which the pattern could be first resolved was 260 K. Clearly the methyl example is more fluxional than the Ph analogue, but otherwise analysis is straightforward. The Sn–P coupling constants differ between the Ph and Me examples, with Me₂ClSnL^{Me} having 105 and 75 Hz and Ph₂ClSnL^{Me} having 94, and 62 Hz, respectively.

In contrast, the ¹¹⁹Sn spectra for PhCl₂SnL^{Me} were much more complex. At 300 K four equally sized peaks were found (Fig. 9), centred at -568.5 ppm.

As the temperature was lowered, to 220 K, the spectra varied before reaching what appeared to be three doublets, with the intensities in the ratio 2:1:1 (Fig. 10).

The apparent splitting parameters are listed in Table 3, as defined in Fig. 11.

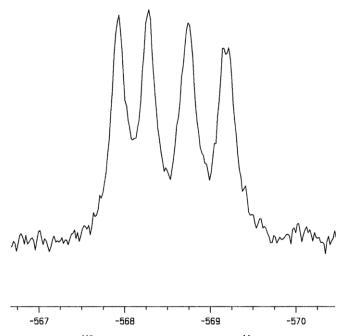


Fig. 9. ¹¹⁹Sn NMR spectrum of PhCl₂SnL^{Me} at 300 K.

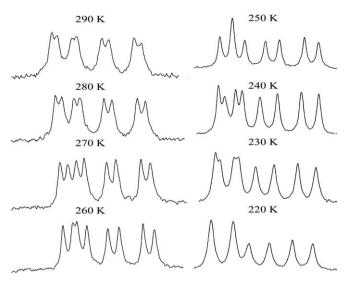


Fig. 10. ¹¹⁹Sn NMR spectra of PhCl₂SnL^{Me}, from 290 to 220 K.

Table 3 Variation in parameters from the $^{119}{\rm Sn}$ NMR variable temperature spectra of PhCl₂SnL $^{\rm Me}$

Temperature (K)	Distance (Hz)				
	1	2	3	4	
300	39.0	(nil)	52.4	(nil)	
290	33.8	8.2	56.1	12.0	
280	31.8	10.2	58.2	13.7	
270	28.8	13.5	59.9	15.9	
260	24.1	17.4	61.5	19.7	
250	20.3	20.3	63.4	22.9	
240	28.3	10.2	67.6	28.4	
230	30.4	6.7	68.3	29.8	
220	36.0	nil	70.8	33.1	

A full explanation of the spectral behavior was not found. Very similar patterns were repeated for PhCl₂SnL^{Et} and MeCl₂SnL^{Me}, which shows the variations are reproducible for all of the R'Cl₂SnL^R compounds.

The complex PhMeClSnL^{Me} (10) was prepared to per-

The complex PhMeClSnL^{Me} (10) was prepared to perhaps aid the understanding of the PhSnCl₂L^{Me} and MeSnCl₂L^{Me} spectra. It should be a chiral compound, with

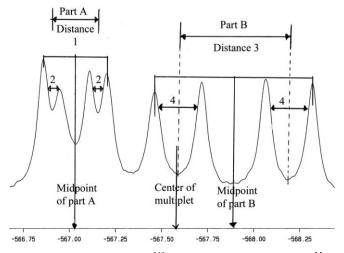


Fig. 11. Interpretation of the ¹¹⁹Sn NMR spectrum of PhCl₂SnL^{Me}.

three distinct phosphorus environments leading to a ¹¹⁹Sn NMR spectrum which should be a doublet of doublets of doublets, in an AXYZ spin system.

At 300 K, the ¹¹⁹Sn spectra of this compound showed a complex multiplet, centered at -417.2 ppm. However, on cooling to 220 K the expected doublet of doublets of doublets was resolved, as eight lines of equal intensity. ${}^2J_{\rm Sn-P(A)}, \; {}^2J_{\rm Sn-P(B)}$ and ${}^2J_{\rm Sn-P(C)}$ were 81.2, 57.6 and 100.0 Hz, respectively.

4. Conclusion

The Kläui ligands are excellent for tri-coordination to organotin(IV) centres, conferring six-coordination with even the least Lewis-acidic tin atoms. Resulting compounds are stable, crystalline substances that are essentially air-stable – certainly more so than the corresponding complexes with the pyrazolylborate ligands. The symmetry of the resulting complexes leads to complex NMR, further affected by room temperature fluxionality.

Acknowledgements

We thank Dr. Jan Wikaira and Professor Ward Robinson, University of Canterbury, for collection of X-ray intensity data. Assistance with NMR spectra from Dr. R. Thomson is gratefully acknowledged. We thank Professor W. Kläui and Professor G. Haegele for useful discussions.

Appendix A. Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 292221–292224. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Rd., Cambridge CB2 1EZ, UK, e-mail: deposit@ccdc.cam.ac.uk or http://www.ccdc.cam.ac.uk.

Full Supplementary Tables of NMR data and copies of variable temperature NMR spectra can be obtained from the authors (b.nicholson@waikato.ac.nz). Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2006.02.010.

References

A.G. Davies, Organotin Chemistry, VCH, Germany, 1997;
 C.E. Holloway, M. Melnik, Main Group Metal Chem. 23 (2000) 1.

- [2] J.A. Zubieta, J.J. Zuckerman, Prog. Inorg. Chem. 24 (1978) 251;
 A.G. MacDiarmid, Organometallic Compounds of the Group IV Elements, Marcel Dekker, New York, 1968;
 - L. Pellerito, L. Nagy, Coord. Chem. Rev. 224 (2002) 111;
 - R. Jambor, L. Dostal, A. Ruzicka, I. Cisarova, J. Brus, M. Holcapek, J. Holccek, Organometallics 21 (2002) 3996.
- [3] Cambridge Crystallographic Data Base, 2006 release; S.W. Ng, Z. Kristallogr. 214 (1999) 424;
 - Z.G.K. Das, K.M. Lo, C. Wei, T.C. Mak, Organometallics 6 (1987) 10:
 - P. Steenwinkel, J.T.B.H. Jastrzebski, B.J. Deelman, D.M. Grove, H. Kooljman, N. Veldman, W.J.J. Smeets, A.L. Spek, G. Van Koten, Organometallics 16 (1997) 5486;
 - K.M. Lo, S.W. Ng, V.G.K. Das, J. Crystallogr. Spectrosc. Res. 23 (1993) 933.
- [4] B.K. Nicholson, J. Organometal. Chem. 265 (1984) 153.
- [5] S.K. Lee, B.K. Nicholson, J. Organometal. Chem. 309 (1986) 257;
 G.G. Lobbia, G. Valle, S. Calogero, P. Cecchi, C. Santini, F. Marchetti, J. Chem. Soc., Dalton Trans. (1999) 2119.
- [6] S. Calogero, G. Valle, G.G. Lobbia, S. Calogero, C. Santini, P. Cecchi, L. Stievano, J. Organometal. Chem. 526 (1996) 269.
- [7] G.G. Lobbia, G. Valle, S. Calogero, P. Cecchi, C. Santini, F. Marchetti, J. Chem. Soc., Dalton Trans. (1996) 2475.
- [8] S. Trofimenko, Scorpionates: the Coordination Chemistry of Polypyrazolborate Ligands, Imperial College Press, London, 1999; S. Trofimenko, Polyhedron 23 (2004) 197.
- [9] W. Kläui, Angew. Chem., Int. Ed. Engl. 29 (1990) 627.
- [10] E.M. Holt, W. Kläui, J.J. Zuckerman, J. Organometal. Chem. 335 (1987) 29;
 W. Kläui, N. Mocigemba, A. Weber-Schuster, R. Bell, W. Frank, D. Mootz, W. Poll, H. Wunderlich, Chem. Eur. J. 8 (2002) 2335.
- [11] A.C. Filippou, P. Portius, G. Kociok-Köhn, V. Albrecht, J. Chem. Soc., Dalton Trans. (2000) 1759.
- [12] W. Kläui, M. Glaum, E. Hahn, T. Lugger, Eur. J. Inorg. Chem. (2000) 21.
- [13] N.C. Lloyd, B.K. Nicholson, A.L. Wilkins, R.A. Thomson, Chem. NZ 66 (2002) 237.
- [14] H.G. Kuivila, R. Sommer, D.C. Green, J. Org. Chem. 33 (1968) 1119.
- [15] G.M. Sheldrick, SHELX-97, University of Göttingen, Göttingen, Germany, 1997.
- [16] L.J. Farrugia, WINGX, University of Glasgow, UK, 2005; L.J. Farrugia, J. Appl. Cryst. 32 (1999) 837.
- [17] T.R. Ward, S. Duclos, B. Therrien, K. Schenk, Organometallics 17 (1998) 2490.
- [18] S.W. Ng, Acta Cryst. C 51 (1995) 2292.
- [19] C.H. Yoder, A.L. Rheingold, M.B. Allen, Private Communication, Cambridge Crystallographic Data Base, (1996);
 - S.W. Ng, V.G.K. Das, Acta Cryst. C 48 (1992) 1839;
 - H.J. Eppley, J.L. Ealy, C.H. Yoder, J.N. Spencer, A.L. Rheingold, J. Organometal. Chem. 431 (1992) 133;
 - V.D. de Castro, C.A.L. Filgueiras, G.M. de Lima, M.T.P. Gambardella, N.L. Speziali, Main Group Metal Chem. 24 (2001) 761; D. Cunningham, E.M. Landers, P. McArdle, N.N. Chonchubhair, J.
- Organometal. Chem. 612 (2000) 53.

 [20] W. Kläui, Z. Naturforsch. B 34 (1979) 1403;
 W. Kläui, W. Peters, N. Liedtke, S. Trofimenko, A.L. Rheingold, R.D. Sommer, Eur. J. Inorg. Chem. (2001) 693.
- [21] I. Omae, J. Organometal. Chem. Library 21 (1989) 1.